Tag Archives: How-To

Entering Flatland

I encourage live-audio humans to spend lots of time listening to studio monitors.

Please Remember:

The opinions expressed are mine only. These opinions do not necessarily reflect anybody else’s opinions. I do not own, operate, manage, or represent any band, venue, or company that I talk about, unless explicitly noted.

Want to use this image for something else? Great! Click it for the link to a high-res or resolution-independent version.

Do you work in live-audio? Are you new to the field? An old hand? Somewhere in between?

I want to encourage you to do something.

I want you to get yourself a pair of basically decent studio monitors. They shouldn’t be huge, or expensive. They just have to be basically flat in terms of their magnitude response. Do NOT add a subwoofer. You don’t need LF drivers bigger than 8″ – anything advertised to play down to about 40 Hz or 50 Hz is probably fine.

I want you to run them as “flat” as possible. I want you to do as much listening with them as possible. Play your favorite music through them. Watch YouTube videos with them passing the audio. When you play computer games, let the monitors make all the noises.

I want you to get used to how they sound.

Oh, and try to tune your car stereo to sound like your studio monitors. If you can only do so coarsely, still do so.

Why?

Because I think it’s very helpful to “calibrate” yourself to un-hyped audio.

A real problem in live music is the tendency to try to make everything “super enhanced.” It’s the idea that loud, deep bass and razor-sharp HF information are the keys to good sound. There’s a problem, though. The extreme ends of the audible spectrum actually aren’t that helpful in concert audio. They are nice to have available, of course. The very best systems can reproduce all (or almost all) of the audible range at high volume, with very low distortion. The issue is over-emphasis. The sacrifice of the absolutely critical midrange – where almost all the musical information actually lives – on the altar of being impressive for 10 seconds.

I’m convinced that part of what drives a tendency to dial up “hyped” audio in a live situation is audio humans listening to similar tonalities when they’re off-duty. They build a recreational system that produces booming bass and slashing treble, yank the midrange down, and get used to that as being “right.” Then, when they’re louderizing noises for a real band in a real room, they try to get the same effect at large scale. This eats power at an incredible rate (especially the low-end), and greatly reduces the ability of the different musical parts to take their appointed place in the mix. If everything gets homogenized into a collection of crispy thuds, the chance of distinctly hearing everything drops like a bag of rocks tied to an even bigger rock that’s been thrown off a cliff made of other rocks.

But it does sound cool!

At first.

A few minutes in, especially at high volume, and the coolness gives way to fatigue.

In my mind, it’s a far better approach to try to get the midrange, or about 100 Hz to 5 kHz, really worked out as well as possible first. Then, you can start thinking about where you are with the four octaves on the top and bottom, and what’s appropriate to do there.

In my opinion, “natural” is actually much more impressive than “impressive,” especially when you don’t have massive reserves of output available. Getting a handle on what’s truly natural is much easier when that kind of sonic experience is what you’ve trained yourself to think of as normal and correct.

So get yourself some studio monitors, and make them your new reference point for what everything is supposed to sound like. I can’t guarantee that it will make you better at mixing bands, but I think there’s a real chance of it.


A Weird LFE Routing Solution

Getting creative to obtain more bottom end.

Please Remember:

The opinions expressed are mine only. These opinions do not necessarily reflect anybody else’s opinions. I do not own, operate, manage, or represent any band, venue, or company that I talk about, unless explicitly noted.

Want to use this image for something else? Great! Click it for the link to a high-res or resolution-independent version.

This is another one of those case studies where you get to see how strange my mind is. As such, be aware that it may not be applicable to you at all. I had a bit of a conundrum, and I solved it in a creative way. Some folks might call it “too creative.”

Maybe those people are boring.

Or they’re reasonable and I’m a little nuts.

Anyway.

I’ve previously mentioned that I handle the audio at my church. We’ve recently added some light percussion to complement our bass-guitar situation, and there was a point where our previous worship leader/ music director wanted more thump. That is, low frequency material that was audible AND a bit “tactile.” In any case, the amount of bass we had happening wasn’t really satisfying.

Part of our problem was how I use system limiting. I’ve long nursed a habit of using a very aggressive limiter across the main mix bus as a “stop the volume here” utility. I decide how loud I want to get (which is really not very loud on Sundays), set the dynamics across the output such that we can’t get any louder, and then smack that processor with a good deal of signal. I’ve gotten to a point where I can get it right most of the time, and “put the band in a box” in terms of volume. Drive the vocals hard and they stay on top, while not jumping out and tearing anyone’s face off when the singers push harder.

At the relatively quiet volume levels that we run things, though, this presents a problem for LF content. To get that extended low-frequency effect that can be oh-so-satisfying, you need to be able to run the bass frequencies rather hotter than everything else. The limiter, though, puts a stop to that. If you’re already hitting the threshold with midrange and high-frequency information, you don’t have anywhere to go.

So, what can you do?

For a while, we took the route of patching into the house system’s subwoofer drive “line.” I would run (effectively) unlimited aux-fed subs to that line, while keeping the mains in check as normal, and we got what we wanted.

But it was a bit of a pain, as patching to the house system required unpatching some of their frontend, pulling an amp partially out of a cabinet, doing our thing, and then reversing the process at the end. I’m not opposed to work, but I like “easy” when I can get it. I eventually came to the conclusion that I didn’t really need the house subs.

This was because:

1) We were far, far below the maximum output capacity of our main speakers.

2) Our main speakers were entirely capable of producing content between 50 – 100 Hz at the level I needed for people to feel the low end a little bit. (Not a lot, just a touch.)

If we wouldn’t have had significant headroom, we would have been sunk. Low Frequency Effects (LFE) require significant power, as I said before. If my artificial headroom reduction was close to the actual maximum output of the system, finding a way around it for bass frequencies wouldn’t have done much. Also, I had to be realistic about what we could get. A full-range, pro-audio box with a 15″ or 12″ LF driver can do the “thump” range at low to moderate volumes without too much trouble. Asking for a bunch of building-rattling boom, which is what you get below about 50 Hz, is not really in line with what such an enclosure can deliver.

With those concerns handled, I simply had to solve a routing problem. For all intents and purposes, I had to create a multiband limiter that was bypassed in the low-frequency band. If you look at the diagram above, that’s what I did.

I now have one bus which is filtered to pass content at 100 Hz and above. It gets the same, super-aggressive limiter as it’s always had.

I also have a separate bus for LFE. That bus is filtered to restrict its information to the range between 50 Hz and 100 Hz, with no limiter included in the path.

Those two buses are then combined into the console’s main output bus.

With this configuration, I can “get on the gas” with low end, while retaining my smashing and smooshing of midrange content. I can have a little bit of fun with percussion and bass, while retaining a small, self-contained system that’s easy to patch. I would certainly not recommend this as a general-purpose solution, but hey – it fits my needs for now.


The Unterminated Line

If nothing’s connected and there’s still a lot of noise, you might want to call the repair shop.

Please Remember:

The opinions expressed are mine only. These opinions do not necessarily reflect anybody else’s opinions. I do not own, operate, manage, or represent any band, venue, or company that I talk about, unless explicitly noted.

Want to use this image for something else? Great! Click it for the link to a high-res or resolution-independent version.

“I thought we fixed the noise on the drum-brain inputs?” I mused aloud, as one of the channels in question hummed like hymenoptera in flight. I had come in to help with another rehearsal for the band called SALT, and I was perplexed. We had previously chased down a bit of noise that was due to a ground loop; Getting everything connected to a common earthing conductor seemed to have helped.

Yet here we were, channel two stubbornly buzzing away.

Another change to the power distribution scheme didn’t help.

Then, I disconnected the cables from the drum-brain. Suddenly – the noise continued, unchanged. Curious. I pulled the connections at the mixer side. Abruptly, nothing happened. Or rather, the noise continued to happen. Oh, dear.


When chasing unwanted noise, disconnecting things is one of your most powerful tools. As you move along a signal chain, you can break the connection at successive places. When you open the circuit and the noise stops, you know that the supplier of your spurious signal is upstream of the break.

Disconnecting the cable to the mixer input should have resulted in relative silence. An unterminated line, that is, an input that is NOT connected to upstream electronics, should be very quiet in this day and age. If something unexplained is driving a console input hard enough to show up on an input meter, yanking out the patch should yield a big drop in the visible and audible level. When that didn’t happen, logic dictated an uncomfortable reality:

1) The problem was still audible, and sounded the same.

3) The input meter was unchanged, continuing to show electrical activity.

4) Muting the input stopped the noise.

5) The problem was, therefore, post the signal cable and pre the channel mute.

In a digital console, this strongly indicates that something to do with the analog input has suffered some sort of failure. Maybe the jack’s internals weren’t quite up to spec. Maybe a solder joint was just good enough to make it through Quality Control, but then let go after some time passed.

In any case, we didn’t have a problem we could fix directly. Luckily, we had some spare channels at the other end of the input count, so we moved the drum-brain connections there. The result was a pair of inputs that were free of the annoying hum, which was nice.

But if you looked at the meter for channel two, there it still was: A surprisingly large amount of input on an unterminated line.


Case Study: FX When FOH Is Also Monitor World

Two reverbs can help you square certain circles.

Please Remember:

The opinions expressed are mine only. These opinions do not necessarily reflect anybody else’s opinions. I do not own, operate, manage, or represent any band, venue, or company that I talk about, unless explicitly noted.

Want to use this image for something else? Great! Click it for the link to a high-res or resolution-independent version.

The Video

The Script

Let’s say that a band has a new mixing console – one of those “digital rigs in a box” that have come on the scene. The musicians call you in because they need some help getting their monitors dialed up. At some point, the players ask for effects in the monitors: The vocals are too dry, and some reverb would be nice.

So, you crank up an FX send with a reverb inserted on the appropriate bus – and nothing happens.

You then remember that this is meant to be a basic setup, with one console handling both FOH and monitors. Your inputs from the band use pre-fader sends for monitor world, but post-fader sends for FX. Since you weren’t building a mix for FOH, all your faders were all the way down. You don’t know where they would be for a real FOH mix, anyway. If the faders are down, a post-fader send can’t get any signal to an FX bus.

Now, you typically don’t want the monitors to track every level tweak made for FOH, but you DO want the FX sends to be dependent on fader position – otherwise, the “wet-to-dry” ratio would change with every fader adjustment.

So, what do you do?

You can square the circle if you can change the pre/ post send configuration to the FX buses, AND if you can also have two reverbs.

Reverb One becomes the monitor reverb. The sends to that reverb are configured to be pre-fader, so that you don’t have to guess at a fader level. The sends from the reverb return channel should also be pre-fader, so that the monitor reverb doesn’t end up in the main mix.

Reverb Two is then setup to be the FOH reverb. The sends to this reverb from the channels are configured as post-fader. Reverb Two, unlike Reberb One, should have output that’s dependent on the channel fader position. Reverb Two is, of course, kept out of the monitor mixes.

With a setup like this, you don’t need to know the FOH mix in advance in order to dial up FX in the monitors. There is the small downside of having to chew up two FX processors, but that’s not a huge problem if it means getting the players what they need for the best performance.


Case Study: Creating A Virtual Guitar Rig In An Emergency

Distortion + filtering = something that can pass as a guitar amplifier in an emergency.

Please Remember:

The opinions expressed are mine only. These opinions do not necessarily reflect anybody else’s opinions. I do not own, operate, manage, or represent any band, venue, or company that I talk about, unless explicitly noted.

Want to use this image for something else? Great! Click it for the link to a high-res or resolution-independent version.

The Video

The Script

Imagine the scene: You’re setting up a band that has exactly one player with an electric guitar. They get to the gig, and suddenly discover a problem: The power supply for their setup has been left at home. Nobody has a spare, because it’s a specialized power supply – and nobody else plays an electric guitar anyway. The musician in question has no way to get a guitar sound without their rig.

At all.

As in, what they have that you can work with is a guitar and a cable. That’s it.

So, what do you do?

Well, in the worst-case scenario, you just find a direct box, run the guitar completely dry, and limp through it all as best you can.

But that’s not your only option. If you’re willing to get a little creative, you can do better than just having everybody grit their teeth and suffer. To get creative, you need to be able to take their guitar rig apart and put it back together again.

Metaphorically, I mean. You can put the screwdriver away.

What I’m getting at is this question: If you break the guitar rig into signal-processing blocks, what does each block do?

When it comes right down to it, a super-simple guitar amp amounts to three things: Some amount of distortion (including no distortion at all), tone controls, and an output filter stack.
The first two parts might make sense, but what’s that third bit?

The output filtering is either an actual loudspeaker, or something that simulates a loudspeaker for a direct feed. If you remove a speaker’s conversion of electricity to sound pressure waves, what’s left over is essentially a non-adjustable equalizer. Take a look at this frequency-response plot for a 12″ guitar speaker by Eminence: It’s basically a 100 Hz to 5 kHz bandpass filter with some extra bumps and dips.

It’s a fair point to note that different guitar amps and amp sims may have these different blocks happening in different orders. Some might forget about the tone-control block entirely. Some might have additional processing available.

Now then.

The first thing to do is to find an active DI, if you can. Active DI boxes have very high input impedances, which (in short) means that just about any guitar pickup will drive that input without a problem.

Next, if you’re as lucky as I am, you have at your disposal a digital console with a guitar-amp simulation effect. The simulator puts all the processing I talked about into a handy package that gets inserted into a channel.

What if you’re not so lucky, though?

The first component is distortion. If you can’t get distortion that’s basically agreeable, you should skip it entirely. If you must generate your own clipping, your best bet is to find some analog device that you can drive hard. Overloading a digital device almost always sounds terrible, unless that digital device is meant to simulate some other type of circuit.
For instance, if you can dig up an analog mini-mixer, you can drive the snot out of both the input and output sides to get a good bit of crunch. (You can also use far less gain on either or both ends, if you prefer.)

Of course, the result of that sounds pretty terrible. The distortion products are unfiltered, so there’s a huge amount of information up in the high reaches of the audible spectrum. To fix that, let’s put some guitar-speaker-esque filtering across the whole business. A high and low-pass filter, plus a parametric boost in the high mids will help us recreate what a 12″ driver might do.
Now that we’ve done that, we can add another parametric filter to act as our tone control.

And there we go! It may not be the greatest guitar sound ever created, but this is an emergency and it’s better than nothing.

There is one more wrinkle, though, and that’s monitoring. Under normal circumstances, our personal monitoring network gets its signals just after each channel’s head amp. Usually that’s great, because nothing I do with a channel that’s post the mic pre ends up directly affecting the monitors. In this case, however, it was important for me to switch the “monitor pick point” on the guitar channel to a spot that was post all my channel processing – but still pre-fader.

In your case, this may not be a problem at all.

But what if it is, and you don’t have very much flexibility in picking where your monitor sends come from?

If you’re in a real bind, you could switch the monitor send on the guitar channel to be post-fader. Set the fader at a point you can live with, and then assign the channel output to an otherwise unused subgroup. Put the subgroup through the main mix, and use the subgroup fader as your main-mix level control for the guitar. You’ll still be able to tweak the level of the guitar in the mix, but the monitor mixes won’t be directly affected if you do.


If You’re Going To Talk, Talk Like You Mean It

A guest post for Schwilly Family Musicians.

Please Remember:

The opinions expressed are mine only. These opinions do not necessarily reflect anybody else’s opinions. I do not own, operate, manage, or represent any band, venue, or company that I talk about, unless explicitly noted.

Want to use this image for something else? Great! Click it for the link to a high-res or resolution-independent version.

“As near as I can tell, the trouble comes from not realizing that the entire time you’re on stage, you’re performing – or rather, that’s what’s expected. If you stop performing, the emotional connection between you and the “folks” starts to get scratchy and intermittent.”


Read the whole thing (for free) here.


Drivers Don’t Have To Die With A Bang

Sane powering shields you from accidents.

Please Remember:

The opinions expressed are mine only. These opinions do not necessarily reflect anybody else’s opinions. I do not own, operate, manage, or represent any band, venue, or company that I talk about, unless explicitly noted.

Want to use this image for something else? Great! Click it for the link to a high-res or resolution-independent version.

I once lived in abject terror of pops, clicks, and bangs. I was once frightened by the thought of a musician unplugging their instrument from a “hot” input before I found the mute button. This was a result of my early experience in audio, where well-meaning (but incorrect) people had assured me that such noises were devastating to loudspeakers. A good solid “thump” from powering up a console when the amps were already on, and some poor driver would either:

A) Take another step towards doom, or…

B) Blow up like that one space station that could be confused with a small moon.

Well, that’s just a load of horsefeathers, but like all audio myths, a kernel of truth can be found. The kernel of truth is that loudspeakers CAN be destroyed by a large spike of input. There’s a reason that drivers and loudspeaker enclosures have peak ratings. Those are “Do Not Exceed” lines that you are smart to avoid crossing. Here’s the deal, though – if you’re using a sane powering strategy with passive boxes, or are using any truly decent powered speaker, worry is essentially unnecessary.

An amplifier simply can not “swing” more voltage than is available from the supply. If the peak voltage available from the amp results in power dissipation equal to or less than what the loudspeaker can handle, a brief transient won’t cook your gear. The instantaneous maximum power will be in the safe range, and the whole signal won’t last long enough for the continuous power to become a factor. An active box that’s well designed will either be powered in such a way, or it may be overpowered and then limited back into a safe range.

So, when a system is set up correctly, the odd mishap isn’t necessarily dangerous. It’s just displeasing to hear.

I believe that the persistence of this myth is due to folks who get talked into “squeezing maximum performance” out of their loudspeakers. They’re told that they have to use very large amplifiers to drive the boxes they have, and so that’s what they do. They hook up amps that can handily deliver power far beyond the “Do Not Exceed” line specified by peak ratings. If they take no other safety precautions, they ARE playing with fire. One good, solid accident, and that may be it for a driver. (If I might be so bold, I would recommend that those folks instead use my speaker powering strategy instead of “spend lots more, maybe get a touch louder, and hope you’re lucky.”)

The worrier doesn’t have to be you. Keep things reasonable, and you’ll be very unlikely to lose money because somebody yanked a cable.


Basic Power Distro Pointers

It’s all about impedance – either to ground, or to the load.

Please Remember:

The opinions expressed are mine only. These opinions do not necessarily reflect anybody else’s opinions. I do not own, operate, manage, or represent any band, venue, or company that I talk about, unless explicitly noted.

Want to use this image for something else? Great! Click it for the link to a high-res or resolution-independent version.

Power distribution is a huge subject in concert production, and there’s no way for me to truly do it justice here. Especially when you get into the electrical supply issues for big shows, the topic can get pretty hairy.

Of course, we’re talking about small shows, so that makes things easier. Even so, please be aware of two major points:

1) Handling electricity correctly is absolutely critical to life and safety. Don’t take anything I say and run off towards some sort of homebrew, half-baked solution that can get someone killed. Making something in your garage to fix one problem is very likely to expose you to some other – potentially lethal – problem.

In fact, there’s the first pointer for small-venue power distro: If you made it yourself and you’re not an actual electrician, it doesn’t belong in the mains-power chain. If you ARE an actual electrician, it still might not belong in the chain. If you can’t buy it in an assembled form from a reputable vendor, plugging it into the wall is probably a bad idea.

2) This is not some sort of exhaustive discussion about everything that can possibly go wrong (or right) with power. This is just a few points that I’ve found helpful over the years.

Impedance To Ground Should Be As Low As Possible

A valid connection to ground is imperative for safety. Removing or bypassing the ground connection to “get on with the show” creates a situation where the impedance to ground is effectively infinite. That’s a very, very, VERY bad thing. If you don’t have a reliable, permanently attached, and code-compliant connection to ground, there’s no reason to go any further. Keep your power disconnected until that problem is fixed.

Electricity is very reliable about following the path of least resistance to a 0-volt reference point, that is, “ground” or “earth.” Solid, low-impedance connections to ground are a kind of insurance against accidents. If, say, a piece of equipment suddenly suffers a fault where the case becomes “hot,” a sufficiently low-impedance connection to ground allows a large current to flow across the connected supply circuit. This doesn’t seem helpful, until you realize that large currents are what trip breakers. The (hopefully) enormous surge pops the breaker or blows the fuse, in an effort to prevent people from dying.

An unreliable or absent connection to ground means that YOU may suddenly be the path to ground with the lowest impedance. Such a condition may end poorly for you.

Impedance To Ground Should Be Equal For Everything

Actually getting this exactly right is pretty close to impossible, however, it’s something to consider if you’re having a stubborn hum or buzz problem.

The issue for us audio humans is that our gear all gets connected together in some way. Although this interconnection doesn’t directly involve mains power, the connections to the main power service are definitely a factor. If you’re in the very common situation of the mixing console and other control gear being powered from a different outlet (and, very possibly, a completely different circuit) than the gear “on deck,” different pieces of gear can have multiple paths to ground. If the available pathways have impedances that differ significantly, current can end up flowing back around the various electrical junctions involved.

(Buzzzzzzzz…)

Since good, low-impedance connections to ground are critical to safety, one solution to this conundrum is to maintain connectivity to ground while using the fewest outlets and circuits practicable. For instance, getting an offending device to use the same circuit as non-problematic devices may help. You have an even better chance if you can use the same outlet box. You must NOT overload an outlet or circuit in the process of trying to achieve quietude, however. Safety has to win all contests of priority. If safety requires that you use multiple outlets and circuits, and you end up with some noise, you just have to live with it.

Resistance To Load Should Be As Low As Possible

Wire has resistance. It may be very low, but it is definitely not zero. Resistance increases in proportion to wire length, and increases in inverse proportion to wire cross-section. In other words, 100 feet of high-gauge (thin) wire resists current more than 1 foot of low-gauge wire.

Resistance causes electrical power to be wasted as heat, and causes noticeable voltage drops across long runs of supply cable. Cable offering too much resistance for the application can overheat under heavy use. This can cause a short, or even a fire.

So, very simply, use the shortest length and lowest gauge of mains power cabling that you can. Keep in mind that everything you connect in series is adding to the length of your run; The 15-foot pigtail on that power-strip counts!

Also, remember that any power cord in direct connection to the wall MUST be rated to carry the entire load that might be present on that connection. “Branches” to individual devices down the line can use lighter-gauge cable, because that single cable doesn’t have to manage the full load on the circuit. The feed to those branches, including any power strip or multitap involved, must be capable of safely operating with the full wattage of the circuit flowing across it. (Speaking generally, “14/3” electrical cable is sufficient for most small-venue power distribution applications. Going down to 16/3 is fine for branching from a multitap, but avoid using that cable for the direct run from the wall.)


As I said, this isn’t everything there is to know about power distro. However, you might find these tips to useful as you go along.


Pre Or Post EQ?

Stop agonizing and just go with post to start.

Please Remember:

The opinions expressed are mine only. These opinions do not necessarily reflect anybody else’s opinions. I do not own, operate, manage, or represent any band, venue, or company that I talk about, unless explicitly noted.

Want to use this image for something else? Great! Click it for the link to a high-res or resolution-independent version.

Oh, the hand-wringing.

Should the audio-human take the pre-EQ split from the amplifier, or the post-EQ split? Isn’t there more control if we choose pre-EQ? If we choose incorrectly, will we ruin the show? HELP!

Actually, I shouldn’t be so dismissive. Shows are important to people – very important, actually – and so taking some time to chew on the many and various decisions involved is a sign of respect and maturity. If you’re actually stopping to think about this, “good on ya.”

What I will not stop rolling my eyes at, though, are live-sound techs who get their underwear mis-configured over not getting a pre-EQ feed from the bass/ keys/ guitar/ whatever. Folks, let’s take a breath. Getting a post-EQ signal is generally unlikely to sink any metaphorical ship, sailboat, or inflatable canoe that we happen to be paddling. In fact, I would say that we should tend to PREFER a post-EQ direct line. Really.


First of all, if this terminology sounds mysterious, it really isn’t. You almost certainly know that “pre” means “before” and “post” means “after.” If you’re deducing, then, that setting a line-out to “pre-EQ” gets you a signal from before the EQ happens, then you’re right. You’re also right in thinking that post-EQ splits happen after all the EQ tweaking has been applied to the signal.

And I think we should generally be comfortable with, and even gravitate toward getting our feed to the console from a point which has the EQ applied.

1) It’s consistent with lots of other things we do. Have you ever mic’ed a guitar amp? A drum? A vocalist? Of course you have. In all of those cases (and many others), you are effectively getting a post-EQ signal. Whether the tone controls are electronic, related to tuning, or just part of how someone sings, you are still subject to how those tonal choices are playing out. So, why are you willing to cut people the slack to make choices that affect your signal when it’s a mic that’s involved, but not a direct line?

2) There’s no reason to be afraid of letting people dial up an overall sound that they want. In fact, if it makes it easier on you, the audio-human, why would that be a bad thing? I’ve been in situations where a player was trying desperately to get their monitor mix to sound right, but was having to fight with an unfamiliar set of tone controls (a parametric EQ) through an engineer. It very well might have gone much faster to just have given the musician a good amount of level through their send, and then let them turn their own rig’s knobs until they felt happy. You can do that with a post-EQ line.

3) Along the same track, what if the player changes their EQ from song to song? What if there are FX going in and out that appear at the post-EQ split, but not from the pre-EQ option? Why throw all that work out the window, just to have “more control” at the console? That sounds like a huge waste of time and effort to me.

4) In any venue of even somewhat reasonable size, having pre-EQ control over the sound from an amplifier doesn’t mean as much as you think it might. If the player does call up a completely horrific, pants-wettingly terrible tone, the chances are that the amplifier is going to be making a LOT of that odious racket anyway. If the music is even somewhat loud, using your sweetly-tweaked, pre-EQ signal to blast over the caterwauling will just be overwhelming to the audience.

Ladies and gents, as I say over and over, we don’t have to fix everything – especially not by default. If we have the option, let’s trust the musicians and go post-EQ as our first attempt. If things turn out badly, toggling the switch takes seconds. (And even taking the other option might not be enough to fix things, so take some deep breaths.) If things go well, we get to ride the momentum of what the players are doing instead of swimming upstream. I say that’s a win.


The Mathematical Key To Truck Pack Tetris

The emptiness is as important as what is filled, grasshopper.

Please Remember:

The opinions expressed are mine only. These opinions do not necessarily reflect anybody else’s opinions. I do not own, operate, manage, or represent any band, venue, or company that I talk about, unless explicitly noted.

3dtetrisWant to use this image for something else? Great! Click it for the link to a high-res or resolution-independent version.

The world of live audio has many frustrating moments wrapped inside it, but very few of those moments is as frustrating as when the cargo vehicle refuses to wrap enough gear inside of itself. If you haven’t come to the end of your cargo space with one more box left to go inside, you may not actually have done this job.

Those of us who have spent a significant time either generating or augmenting musical noises will, generally, have gotten an intuitive grasp of “truck packing.” It’s basically 3D Tetris. You try to find nooks and crannies that might fit your gear, and then you rotate and relocate that gear to wedge into the hole you found. This process is repeated until you run out of gear to pack, or you run out of room (at 1 AM, with snow falling, a flood of tears welling up in your eyes, and a growing urge to sit down with an alcoholic beverage so as to re-examine your life).

Sometimes you run out of room because you simply have too much gear for the truck, van, SUV, moose-powered sleigh, or jet-equipped platypus. At other times, though, you get stymied due to bad math. Packing is applied geometry, and geometry, like all regular math, runs on a system of predictable rules.

The key rule to getting the most out of your cargo space can’t be talked about until we establish the meta-rule, however:

All cargo-packing must be done in a way that allows the cargo vehicle to be operated safely. If a mathematically perfect pack prevents the vehicle from being operated safely, the pack must be changed.

So, there’s the meta-rule. Here’s the key bit of math, assuming that you start with the largest items first (they have the least flexibility in terms of finding a space to squeeze into):

At any point in the pack, the remaining cargo space can be subdivided into one more more volumes described by a rectangular prism (a cubic or rectangular box). Each imaginary box of remaining space should be as large as possible; The number of imaginary boxes should be as few as possible.

In real life, this is a 3D problem. However, to make it easier to visualize, I’ll show some 2D examples. Below is our 2D cargo vehicle, with 2D roadcases strewn all around. If we can arrange the cases such that they are inside the dotted outline of our cargo vehicle, we can get to the gig.

empty

Our first try doesn’t go so well. There are supposed to be six of those light grey boxes, but we only got five in the van. The pack looks very efficient and orderly, but it doesn’t work.

oops

But, if we’re careful about continually maximizing the remaining, contiguous space during the pack, we actually make it. It’s important to note that concessions have to be made for other, physical practicalities, like generally being able to load the vehicle from the front to the back.

step1

step2

step3

step4

step5

The end result doesn’t look as orderly as our first try, but it actually lets us transport all the necessary boxes.